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1. Introduction 

The U.S. Army Research Laboratory (ARL) has developed the Battlescale 
Forecast Model (BFM) for operational short-range (12-h) forecasting over an 
area of 500 by 500 km or smaller. The BFM will become a major part of the 
Integrated Meteorological System Block 2 software. 

The BFM is composed of two major programs. The first part of the program, 
called 3dobj, creates initial and boundary values for a forecast model by 
analyzing the U.S. Air Force Global Spectral Model (GSM) forecast field 
output data and upper air sounding data if it is available. In the second part of 
the program, a forecast model was adapted from a mesoscale meteorological 
model called the Higher Order Turbulence Model for Atmospheric Circulation 
(HOTMAC) developed by Yamada. [1] HOTMAC has been used extensively 
at ARL [2,3,4] and can simulate the evolution of locally forced circulations due 

to surface heating and cooling over meso- ß and y scale areas. HOTMAC is 
numerically stable and easy to use; therefore, it is suitable for operational use. 

In the present study, the forecasting capability of the BFM is evaluated by 
comparing the model computed results with surface and upper air data obtained 
by the Surface Automated Meteorological System (SAMS) and the Atmospheric 
Profiler Research Facility (APRF), respectively, located at the White Sands 
Missile Range (WSMR), NM. The APRF operates 49.25-, 404.37-, and 
924-MHz profilers and a monostatic acoustic sounder and provides vertical 
profiles of wind and temperature. In a case study described in this report, 12-h 
forecastings for the period from 05 to 17 local standard time (LST) of 
10 Mar 94 were made using different initialization methods. On this day, 
surface wind direction over WSMR varied from north in the early morning to 
south in the late morning. To simulate this wind direction shift, three different 
initialization methods were examined. 

The three methods were applied to 25 12-h forecast periods, and the forecast 
results of surface wind components and temperature were compared with SAMS 
observational data. In addition, temporal and spatial linear interpolation of the 
GSM grid values was done, and the values were compared with observation. 



Additionally, horizontal components of surface winds at the SAMS sites were 
assimilated by nudging every 3 h into the model calculation and compared with 
the observation. The comparison results of three initialization methods and two 
additional methods were evaluated using statistical parameters such as mean 
residuals and standard deviation of mean residuals. 

The purposes of this report are to describe the BFM, the results of the case 
study, and statistical evaluation of forecast results. 



2.  BFM 

2.1    HOTMAC 

The basic equations for HOTMAC are the conservation equations for mass, 
momentum, potential temperature, mixing ratio of water vapor, and turbulence 
kinetic energy. [5] 

The potential temperature equation was modified so the deviation of potential 
temperature of the large-scale flow at an initial state was solved. [1] The 
modification was to maintain stable numerical simulations and realistically- 
predicted wind fields when HOTMAC was applied to simulate air flows over 
complex terrain with strong wind shear and temperature inversion. [5] The 
large-scale temperature was allowed to vary with space. 

Also referred to as a second-moment turbulence-closure model, HOTMAC is 
based on a set of second-moment turbulence equations closed by assuming 
certain relationships between unknown higher-order turbulence moments and the 
known lower-order moments. HOTMAC can be used under general conditions 
of flow and thermal stratification; methods for turbulence parameterization are 
more advanced than those in simple eddy viscosity models. The present model, 
referred to as the Level 2.5 model, [6] solves a prognostic equation for 
turbulence kinetic energy only; the remaining second-moment turbulence 
variables, such as standard deviations of wind components and heat and 
momentum fluxes, are solved from a set of algebraic equations. 

The present model assumes hydrostatic equilibrium and uses the Boussinesq 
approximation. Therefore, in theory, the model applications are limited to 
flows where the local acceleration and advection terms in the equation of 
vertical motion are much smaller than the acceleration caused by gravity 
(hydrostatic equilibrium) and temperature variations in the horizontal directions 
are not too large (Boussinesq approximation). This assumption is probably 
satisfied with a horizontal grid spacing greater than a few kilometers. The only 
way to assure that these assumptions are reasonable is to repeat the simulations 
with a nonhydrostatic, non-Boussinesq mesoscale model, and compare the 



results with the present results.  It is very complicated and almost impossible 
to construct a non-Boussinesq turbulence closure model. 

Surface boundary conditions were constructed from the empirical formulas of 
Dyer and Hicks [7] for nondimensional wind and temperature profiles. The 
temperatures in the soil layers were obtained by solutions of the heat conduction 
equation. Appropriate boundary conditions were the heat balance at the soil 
surface and specification of the soil temperature at a certain depth. The lateral 
boundary values of horizontal wind components, potential temperature, moisture 
mixing ratio, and turbulence kinetic energy were obtained by integration of the 
corresponding governing equations, except variations in the horizontal directions 
were neglected. Parameterization oftall canopy effects on wind and radiation 
has been studied; [8] the effects are included in the present model. 

The governing equations were integrated by use of the Alternating Direction 
Implicit method. [9] A time increment was chosen to be 90 percent of the 
minimum value of Ax/Uj, where Ax; is a grid spacing and Uj the velocity 
component in the i-th direction (Courant-Freidrich-Lewy criterion). The 
integration time increment is also limited by the propagation speed of gravity 
waves computed based on the potential temperature gradients. To increase the 
accuracy of finite-difference approximations, mean and turbulence variables are 
defined at grids staggered in the horizontal and vertical directions. Mean 
winds, temperature, and water vapor vary most with height near the surface. 
To resolve the variations without introducing an excessive computational 
burden, nonuniform grid spacing is used in the vertical direction. 

To assimilate observed data into the model calculation, nudging terms were 
added to the model equations. Assimilations of data by nudging are made to 
initialize the forecast calculation and provide time-dependent lateral boundary 
values. 



2.2    Nudging Method 

By adding nudging terms, the equations of horizontal wind components are 
modified as follows: 

f - *, * Cn(Ut - U) (1) 

dV (2) 

where 
Ut = the target wind component of the x direction 
Vt = the target wind component of the y direction. 

Ut and Vt are described in the following section. 

The equations of potential temperature deviation and mixing ratio are written 
with nudging terms as follows: 

™ -", ♦ C„(5e,b - 88) 0) 

f - Ft ♦ C„((U - q) (4) 

where 
Cn   = the nudging coefficient (a constant value of 5 x 10"4 is employed) 
86  = the deviation of potential temperature from an initial potential 

temperature 
q     = water vapor mixing ratio. 

Fl5 F2, F3, and F4 are the terms found in HOTMAC equations. [1] 



2.3    Target Wind 

Comparisons in the simulated wind fields, found by nudging to the target wind 
components Ut and Vt and by nudging to the observed wind components Uobs 

and Vobs, were conducted. [10] It was shown that nudging to the target wind 
components produces better agreement between simulated and observed upper 
winds than nudging to the observed wind components. 

Target wind components Ut and V, are derived as follows. The equations of 
motion with the target wind under no frictional force can be written as follows: 

dU 
dt 
™ =f(V~ Vg) + Cn(Ut- U) (5) 

% = ~f(U- U) +Cn(Vt- V). (6) 
at 

The solutions to the above equations at equilibrium are given by the following: 

U = 
f Cn(Vt - Vg) - f2Ug - Cn% (7) 

C.W 

- fC (U- U) + f2V  + C2V 
V = "    *       8 8       n   ' (8) 

Letting U and V approach Uobs and Vobs, respectively, and solving for Ut and Vt, 
the following equations are obtained: 

U, = Vobs ~ Mvobs - Vg) (9) 

v< = Kts+ -£(uobs - ug) (io) 

10 



where 
Uobs and Vobs = the observed wind components 
Ug and Vg     = the geostrophic wind components. 

The formulas for Ug and Vg can be found in Yamada [11] and Yamada and 
Bunker. [1] Ut and Vt are, in general, different from the corresponding 
large-scale wind components. Observed winds may be used as target winds if 
the Coriolis force is absent or if the observed winds are identical to the 
geostrophic winds. If only the observed winds are used in the nudging in all 
other cases, the solutions will generally be different from the observations. 

The physical meaning of the target winds is that the solutions of the equations 
of motions with the target winds become identical to the observed winds in the 
absence of frictional effects. Thus, modeled winds should converge to 
observations in the layers far above the boundary layer where frictional effects 
are negligible. On the other hand, atmospheric turbulence in the boundary layer 
is significant because of frictional effects, and the nudging terms play relatively 
minor roles. In summary, the nudging terms enforce the modeled winds to 
match observations in the free atmosphere, but they play relatively minor roles 
in the boundary layer. 

11 



3.  Model Domain and Observed Data 

The study area was centered over WSMR, NM. Figure 1 shows terrain 
elevation distribution in the area covering 800 by 800 km. The latitude and 
longitude of the center of the area are, 33.20 N and 106.41 W, respectively. 
The area within the inner square covers 250 by 250 km, and forecast 
computation was conducted over this area. Meteorological variables are 
calculated at 51 by 51 by 16 grid points with unit horizontal grid distance of 
5 km. The top-of-the-model atmosphere is 7000 m above the highest elevation 
in the domain. 

GSM output is reported on grid points spaced 381 km apart on the mandatory 
pressure surfaces, as marked by an asterisk in figure 1. Three-dimensional 
(3-D) objective analyses of GSM data were made over the area covering 
800 by 800 km, and the data over 250 by 250 km were used for forecast 
computation. Figure 2 shows detailed elevation distribution of the forecast 
computation domain. The locations of SAMS at WSMR are marked by Arabic 
numbers. 

For this study, 12-h forecasting computations were made for 25 periods during 
Feb and Mar 94, as shown in table 1. 

13 



NWSMR5.0K.161X161 200  M  CONTOURS 

Figure 1. Elevation data with 200-m contours containing an 800- by 800-km area 
of the Southwestern United States. The longitude and latitude of the center are 
106.406 W and 33.200 N. The locations of GSM grid points are marked by *. The 
area surrounded by a square is the domain of the BFM for the present study 
(200 by 200 km). 
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Figure 2. Domain of the BFM for the present study covering the area of 
250 by 250 km. Contour lines are drawn every 200 m. The locations of SAMS are 
marked by numbers. 
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Table 1. Twenty five 12-h periods during Feb and Mar 94, used 

^ 

for forecast calculations in the present study 

Forecast Period 

Period Date Period 
(GMT) 

1 2 Feb 12 -00 
2 3 Feb 00 - 12 
3 17 Feb 00 - 12 
4 17 Feb 12 -00 
5 18 Feb 00 - 12 
6 18 Feb 12 -00 
7 23 Feb 00- - 12 
8 23 Feb 12- -00 

• 9 24 Feb 12- -00 
10 24 Feb 12- ■00 
11 2 Mar 12- ■00 
12 2 Mar 12- ■00 
13 3 Mar 00- 12 
14 3 Mar 12- 00 
15 4 Mar 00- 12 
16 7 Mar 00- 12 
17 7 Mar 12- 00 
18 8 Mar 00- 12 
19 9 Mar 00- 12 
20 9 Mar 12- 00 
21 10 Mar 00- 12 
22 10 Mar 12- 00 
23 15 Mar 00- 12 
24 16 Mar 00- 12 
25 16 Mar 12- 00 
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4.  Case Study Overview 

A major reason the initialization methods in sections 5.2 and 5.3 are employed 
is based on the study of surface wind variation during the 12 h-period of 05 
through 17 LST of 10 Mar 94 described in this section. 

Figures 3 through 8 are observed surface wind vectors during the 12-h period 
from 05 to 17 LST on 10 Mar 94. During the morning hours until 10 LST, the 
prevailing wind directions in WSMR were predominantly from the north. 
Figure 5 shows that wind directions were transitioning to the southerly. At 
12 LST, all the SAMS stations recorded southerly winds, and southerly winds 
were dominant in the afternoon. 

Figures 9 and 10 show that the wind directions calculated from the GSM data 
were predominantly southerly at 05 and 17 LST, contrary to the observed 
surface wind variations. It is concluded that, to obtain good forecast of wind, 
incorporation of observed data into the initial wind vector field is necessary. 
A uniform wind vector field shown in figure 11 was the initial field at 
z* = 10 m level calculated as the mean of the observed data at 05 LST on 
10 Mar 94 and corresponds to the initialization time of forecast calculation. 

Figures 12 through 15 are forecast surface wind fields based on the initial wind 
field shown in figure 11. Northerly or downslope winds are the main features 
until 10 LST in the morning. However, wind directions changed to southerly 
or upslope between 10 and 11 LST, and southerly or upslope components of 
wind are intensified during the afternoon. The transition of wind directions 
from northerly to southerly also occurred in the observed wind data (figures 3 
through 8). 

Figures 16 through 19 are also forecast surface wind fields corresponding to 
figures 12 through 15, except the forecast computation is initialized by the 
GSM data shown in figure 9. It is shown that the forecast computation 
initialized by the GSM failed to produce northerly wind vector distributions in 
the morning hours (figures 16 and 17). However, the afternoon wind fields 
become similar in the two cases (figures 14, 15, 18, and 19). 

17 
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Figure 3. Observed surface wind vectors at 
WSMR on 10 Mar 94 at 05 LST, maximum 
vector is 6.9 m/s. 
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Figure 4. Observed surface wind vectors at 
WSMR on 10 Mar 94 at 08 LST, maximum 
vector is 5.6 m/s. 
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Figure 5. Observed surface wind vectors at 
WSMR on 10 Mar 94 at 11 LST, maximum 
vector is 5.64 m/s. 
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Figure 6. Observed surface wind vectors at 
WSMR on 10 Mar 94 at 12 LST, maximum 
vector 6.43 m/s. 
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Figure 7. Observed surface wind vectors at 
WSMR on 10 Mar 94 at 14 LST, maximum 
vector 6.21 m/s. 
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Figure 8. Observed surface wind vectors at 
WSMR on 10 Mar 94 at 17 LST, maximum 
vector 7.53 m/s. 
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rtarch    10   05    Ist   4-th    la> WIND  FIELD 

Figure 9.  Surface wind vector distribution obtained from the analysis of GSM 
data at 05 LST on 10 Mar 94, maximum vector 10 m/s. 
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Figure 10. Surface wind vector distribution obtained from the analysis of GSM data 
at 17 LST on 10 Mar 94, maximum vector 12.7 m/s. 
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Figure 11.  Wind vector field at z* = 10 m level, calculated from observed data at 
05 LST on 10 Mar 94, maximum vector 8.81 m/s. 
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Figure 12. Forecast surface wind field at 7 LST on 10 Mar 94, maximum wind 
speed is 9.24 m/s. Initial wind field at 5 LST was calculated using mean speed and 
direction of SAMS stations. 
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Figure 13. Forecast surface wind field at 10 LST on 10 Mar 94, maximum wind 
speed is 3.59 m/s. Initial wind field at 5 LST was calculated using mean speed and 
direction of SAMS stations. 
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Figure 14. Forecast surface wind field at 11 LST on 10 Mar 94, maximum wind 
speed is 4.71 m/s. Initial wind field at 5 LST was calculated using mean speed and 
direction of SAMS stations. 
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Figure 15. Forecast surface wind field at 17 LST on 10 Mar 94, maximum wind 
speed is 8.26 m/s. Initial wind field at 5 LST was calculated using mean speed and 
direction of SAMS stations. 
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Figure 16.   Forecast surface wind field at 7 LST on 10 Mar 94, maximum wind 
speed is 6.82 m/s.  Initial wind field was calculated from GSM data. 
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Figure 17.   Forecast surface wind field at 10 LST on 10 Mar 94, maximum wind 
speed is 7.53 m/s.  Initial wind field was calculated from GSM data. 
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Figure 18.   Forecast surface wind field at 11 LST on 10 Mar 94, maximum wind 
speed is 9.76 m/s.  Initial wind field was calculated from GSM data. 
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Figure 19.   Forecast surface wind field at 17 LST on 10 Mar 94, maximum wind 
speed is 11.7 m/s.  Initial wind field was calculated from GSM data. 
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Figures 20 through 23 show the 12-h variations of wind direction and speed at 
10 m level and surface and dew-point temperature at 2 m level at four 
representative SAMS sites for the period of 5 through 17 LST on 10 Mar 94. 
Figure 2 shows the locations of SAMS. In the figures, solid lines represent 
calculation (forecast) and lines with circles represent observation. 
Stations 01 (CST) and 11 (DEN) are located in the Tularosa Valley and 
stations 09 (SAL) and 17 (SAC) are located, respectively, on the San Andres 
and Sacramento mountains. 

Figures 24 through 27 are similar to figures 20 through 23, except that forecast 
calculation was initialized by the GSM data. Figures 24 through 27 again show 
that the initialization of forecast calculation by the GSM data failed to produce 
the northerly wind directions in the morning hour. 

Figures 20 through 27 show that temperature and dew-point variations also are 
significantly different between the two different initialization methods. In both 
methods, identical sets of 3-D data of temperature and water vapor mixing ratio, 
analyzed from the GSM data, were assimilated into the model calculation. 

Vertical distributions of horizontal u and v wind components and temperature 
are compared between the forecast calculation and the profiler observation. The 
location of the profiler is near 19 in figure 2. Figures 28 and 29 show the 
vertical distributions respectively, at 7 and 17 LST on 10 Mar 94. The model 
was initialized by the wind field shown in figure 11. Figures 30 and 31 are 
similar to figures 28 and 29, but they are initialized using the GSM data. From 
the comparisons between figures 28, 29, 30, and 31, excellent agreement 
between calculation and observation was obtained at 07 LST when the model 
was initialized using surface wind data, particularly, in the y-component of 
wind in the boundary layer. However, the two different initialization methods 
yielded very small discrepancies at 17 LST, as can be seen in figures 29 and 
31. Because the nudging was made in both methods toward the same GSM 
data field at a 12-h forecast time, this result could have been expected. 

It can be concluded from this case study that incorporation of observed wind 
data into the initialization field improves the wind field at early hours of 
forecast calculation. 
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Figure 20. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 01 (CST). Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using mean 
wind speed and direction of SAMS stations. 
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Figure 21. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 09 (SAL). Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using mean 
wind speed and direction of SAMS stations. 
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Figure 22. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 11 (DEN). Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using mean 
wind speed and direction of SAMS stations. 
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Figure 23. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 17 (SAC). Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using mean 
wind speed and direction of SAMS stations. 
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Figure 24. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 01 (CST). Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using GSM 
data. 
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Figure 25. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 09 (SAL). Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using GSM 
data. 
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Figure 26. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 11 (DEN); Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using GSM 
data. 
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Figure 27. Temporal variations of wind direction and speed, dew point, and 
temperature at SAMS site 17 (SAC). Solid lines represent forecast results, and lines 
with circles represent observation. Forecast calculation was initialized using GSM 
data. 
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Figure 28. Vertical profiles of horizontal wind components u and v and temperature 
at 7 LST on 10 Mar 94. Thin lines represent forecast calculations, and thick lines 
represent observation. Forecast calculation was initialized using mean wind speed 
and direction, calculated from SAMS data at 05 LST. 
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Figure 29. Vertical profiles of horizontal wind components u and v and temperature 
at 17 LST on 10 Mar 94. Thin lines represent forecast calculations, and thick lines 
represent observation. Forecast calculation was initialized using mean wind speed 
and direction, calculated from SAMS data at 05 LST. 
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Figure 30. Vertical profiles of horizontal wind components u and v and temperature 
at 7 LST on 10 Mar 94. Thin lines represent forecast calculations, and thick lines 
represent observation. Forecast calculation was initialized using GSM data at 
05 LST. 
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Figure 31. Vertical profiles of horizontal wind components u and v and temperature 
at 17 LST on 10 Mar 94. Thin lines represent forecast calculations, and thick lines 
represent observation.  Forecast calculation was initialized using GSM data. 
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5.  Initialization Methods 

Based on the study described in section 4, the BFM was initialized by three 
different methods described in sections 5.1 through 5.3. Horizontal wind 
components u and v and temperature were compared with observations at every 
hour of the forecasting periods. For the comparison, two additional computed 
data mentioned in sections 5.4 and 5.5 were also compared with observations. 

5.1    Initialization Using GSM 

The GSM uses normalized pressure, sigma = p/ps, for a vertical coordinate. 
Thus, meteorological variables are calculated on constant pressure surfaces. 
The GSM analyses and 12-h forecast values of horizontal wind components, 
temperature, dew-point depression, and geopotential height on mandatory 
pressure levels are used in this study. 

HOTMAC uses z*, defined in the following manner, for a vertical coordinate: 

z* = l-i—i (ii) 
H~zs 

where 
z* = the transformed vertical coordinate 
z = the Cartesian vertical coordinate 
zg = ground elevation above sea level 
H = the material surface top of the model 
H = the corresponding height in the Cartesian coordinate. 

H is defined as 

H = H + z (12) 

where 
zgmax      =    me maximum value of zg. 
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Because different vertical coordinates are used in GSM and HOTMAC, the 
following two procedures are performed to format GSM output data to initialize 
HOTMAC: 

1. Horizontal interpolations of wind components (u,v), temperature, mixing 
ratio, and geopotential height from GSM grid points to HOTMAC grid points 
on constant pressure surface; Barnes' method [12] is used for horizontal 
interpolation. 

2. A linear interpolation method is used for vertical interpolations of the 
variables from constant pressure to z* surfaces at HOTMAC grid points. 

For 12-h forecasts, current analyses and 12-hr forecast fields of GSM are 
analyzed using the above method, and hourly data are generated by a linear 
interpolation between two time periods. At 1 h before the initiation of forecast 
computation, the first hourly analyses field data are assimilated using the 
nudging method for 1 h. After that, the next hourly data are assimilated in at 
1 h ahead of forecast time for 1 h. This process is repeated for the entire 12-h 
period. 

In this study, nudging was enforced only in the 9 uppermost layers 
(corresponding to a height greater than 151 m of z*) of 16 vertical layers. 

5.2    Initialization Using GSM and Mean Surface Wind Direction 
and Speed 

As described in section 4, wind directions in the layers near the surface reduced 
from GSM data are sometimes significantly different from those observed. 
Thus, to obtain good agreements of wind vectors between computation and 
observation in short-range forecasts, incorporation of surface wind data into 
initial fields is necessary. From SAMS data, mean surface wind vector 
components were calculated at the initial forecast time, and logarithmic wind 
profiles are assumed from the surface (z* = 10 m) to the seventh layer 
(z* = 151 m) as 
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VJto = -^ofacos(0ofa)log^ (13) 
z (4) 

Uobs(k) = -^^sinCe^log^ (14) 
z (4) 

For the eighth and ninth layers, linear interpolations of vector components (u,v) 
are made as 

Vobß) = UJ7) +  t/°J10) " Uobs(7\z*(k) - zV)) (15) obs z*(10) - zV) 

V  CIO") - V  CD 
vjfi = v*fl)+ -^^-^—°—(z*(k) - zV)) (16> ob z*(10) - zV) 

where 
WSobs      =  mean surface wind speed 

60bs = mean surface wind direction 
Uobs(k) = x component of wind vectors at the kth layer 
Vobs(k) = y component of wind vectors at the kth layer 
Uobs(10) = 10th layer wind components calculated from the GSM data 
Vobs(10) = 10th layer wind components calculated from the GSM data 

5.3    Nudging of Individual Surface Wind Data at Initial Time 

In addition to the method in 5.2, individual wind data obtained at initialization 
time were assimilated into model calculations at the grid points adjacent to the 
SAMS locations. 
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The method of assimilation of surface wind data is as follows: 

E4 
VJM - —i- (17) 

Wind vector components at grid point (ij) at the fourth layer (z* = 10 m) are 
calculated as 

V(iJ) -  T±- (18) 

E4> 

where 
U, = the x component of the wind vector at station 1 
V, = the y component of the wind vector at station 1 
r, = the grid distance between station 1 and a grid point (ij). 

The nudging parameter at a grid point (i j) for r < R is calculated as 

e, ■ a, (1.0 - 4) (19) 

R2 

where 
a,    =    an empirical constant (0.01). 

For r ^ R, 

cx = 0.0 (20) 

where 
R   =     a critical distance. 
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Grid points located within a grid distance less than 4 were assumed affected by 
the nudging of GSM data. 

5.4 Surface Data Nudging Every 3 h 

The method in section 5.3 nudges wind data only at the first hour of model 
computation. In this method, the SAMS wind data is assimilated into model 
calculations every 3 h. The data observed at 5, 8, 11, 14, and 17 LST were 
nudged from 4, 7, 10, 13, and 16 LST for 1 h. 

5.5 Linear Interpolation of GSM Data 

For comparison purposes, the 3-D GSM data set, created by the method 
described in section 5.1 at two time periods, is linearly interpolated in time. 
Resulting data at hourly intervals are compared with observations. 
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6.  Statistical Parameters 

To examine the differences in the results using methods described in sections 
5.1 through 5.5, the following statistical parameters are calculated hourly by 
using the data from the 25 different cases. 

6.1    Mean Residual 

The difference between observed and forecast values of a meteorological 
parameter can be written as follows: 

F    = F.   - F, (21) res obs for v 

where 
F    =    a meteorological parameter. 

The subscripts (res), (obs), and (for) represent residual, observation, and 
forecast, respectively. 

(22) 

A mean residual for different forecast hours is defined as follows: 

S—/.x 2-*m 2^n    resjnjk > 
*V«w =   m x n 

where 
t = forecast time 
m = the number of forecast cases 
n = the number of SAMS data. 

6.2    Standard Deviation of Residual 

The standard deviation of residual of a meteorological parameter is defined as 
follows: 
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/Lm ^n ^«W^        FreßV     2 (23) 

™ m x n 

where 

Fres(f)   =    the standard deviation of the residual at forecast time t. 

Improved forecast calculations result in mean residuals converging to zero in 
conjunction with smaller standard deviations of residual. Perfect agreement 
between observation and forecast results in zero for both parameters. 
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7.  Results 

Twenty five cases given in table 1 were simulated using the different 
initialization methods described in section 5. Statistical parameters in the 
25 cases were calculated for every hour of forecast calculation from 1 to 12 h. 

In figures 32 through 36, the mean residuals (thick lines) and standard 
deviations (thin lines) are plotted as a function of time. 

Comparisons of figures 32 through 36 reveal the following: 

1. From figures 32 and 36, the BFM produced much better forecast fields of 
wind and temperature than the linear interpolation of GSM data. In general, the 
values of mean residuals and standard deviations are smaller in figure 32 than 
in figure 36. When the GSM data are input to the BFM, physical schemes of 
the model produced better agreement than simple interpolation of the data in 
time and space. 

2. From figures 32 and 33, the initialization using the mean wind speed and 
direction (section 5.2) produced better forecast fields than the GSM data 
initialization (section 5.1). Substantial improvements in x and y components 
of wind vectors were obtained. As can be seen in figure 32, the mean residual 
values of both wind vector components were negative, meaning that BFM 
forecast calculations initialized by the GSM data produced larger wind vector 
components than the observed. Conversely, the mean residual values in 
figure 33 are much closer to zero, indicating that the average BFM, using mean 
wind speed and direction at initial times, produced surface wind vector 
component magnitudes similar to those observed. Even temperature mean 
residuals in figure 32 showed larger negative values throughout the 12-h 
forecast calculation than in figure 33. The initial temperature fields using the 
methods in sections 5.1 and 5.2 are identical for all 25 simulations. The 
model's schemes of boundary layer produce better temperature predictions using 
the method in section 5.2, compared to the method in section 5.1. 
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Figure 32. Temporal variations of mean residual (mean curves) and standard 
deviation (upper- and lower-bound curves) for the method in section 5.1 (initializing 
using GSM only). Upper plots represent the surface x wind vector components, 
middle plots are the y wind vector components, and bottom plots are surface 
temperature. 
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Figure 33. Temporal variations of mean residual (mean curves) and standard 
deviation (upper- and lower-bound curves) for forecast calculation initialized by the 
method in section 5.2 (initialization using GSM and mean surface wind direction and 
speed). Upper plots are the surface x wind vector components, middle plots are the 
y wind vector components, and bottom plots are surface temperature. 
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Figure 34. Temporal variations of mean residual (mean curves) and standard 
deviation (upper- and lower-bound curves) for forecast calculation initialized by the 
method in section 5.3 (initialization using GSM and mean surface wind direction and 
speed, plus nudging of individual surface data at initial time). Upper plots are the 
surface x wind vector components, middle plots are the y wind vector components, 
and bottom plots are surface temperature. 
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Figure 35. Temporal variations of mean residual (mean curves) and standard 
deviation (upper- and lower-bound curves) for surface wind data nudged every 3 h 
of calculation (section 5.4). Upper plots are the surface x wind vector components, 
middle plots are the y wind vector components, and bottom plots are surface 
temperature. 
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Figure 36. Temporal variations of mean residual (mean curves) and standard 
deviation (upper- and lower-bound curves) for temporal and spatial interpolation of 
GSM data. Upper plots are the surface x wind vector components, middle plots are 
the y wind vector components, and bottom plots are surface temperature. 
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Although it is not clearly understood, the profiles of wind components assumed 
in the method in section 5.2 may coincide to produce good temperature profile 
predictions in the boundary layer. Further studies are needed to understand this 
problem. 

3. Comparison between figures 33 and 34 indicate that nudging the surface 
wind vector components at the forecast initial time (section 5.3) produced better 
forecast results in wind fields for a few hours of the early stage of calculation, 
but during the later stage of calculation, the forecast using the method described 
in section 5.2 produced superior agreement between predicted and observed 
parameters. This can be inferred from larger standard deviations in x and y 
components of wind in the last several hours of forecast calculation. Nudging 
of surface wind components that are not dynamically balanced with the 
numerical schemes of the model may be the reason for the results of the method 
in section 5.3. Temperature fields show little differences between the methods 
in sections 5.2 and 5.3 (nudging of individual surface wind data at initial time). 

4. Surface data nudging every 3 h (section 5.4) produced the best agreements 
between calculation and observation. In this method, observed wind vector 
components were assimilated into model calculations by nudging every 3 h. 
Figure 35 shows smaller standard deviations at 3, 6, 9, and 12 h when the data 
were nudged during the previous 1 h. It should be noted that, although nudging 
of dynamically unbalanced wind vectors was done repeatedly, the numerical 
scheme of the model is stable enough to prevent numerical instability. 
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8.  Summary 

The forecasting skills of the BFM, developed at ARL for operational 
short-range (< 12 h) forecasting over battlescale areas (< 500 by 500 km), were 
evaluated. The BFM was applied to a model domain of 250 by 250 km 
covering WSMR, NM where observation data by SAMS and profilers are 
regularly available. 

From the case study of wind field variation between 5 and 17 LST, 10 Mar 94, 
it became clear that wind fields interpolated from GSM data widely deviated 
from observed ones in the early morning hours because of the coarse grid 
spacing and the poor numerical schemes of boundary-layer physics of GSM. 
Thus, it was concluded that incorporation of observed surface wind data into the 
initial fields is important. 

Three different BFM initialization methods were used to make 25 12-h 
forecasting cases. The initialization fields created by the three different 
methods were as follows: 

1. GSM data interpolated fields of wind, temperature, and water vapor mixing 
ratio 

2. Mean surface wind speed and direction based on observation in the 
boundary layer and GSM data interpolated upper air wind fields 

3. Assimilation of observed surface wind vectors into the model by nudging 
during 1 h of the precomputation period 

In all three methods, initial fields of temperature and water vapor were given 
by the interpolation of GSM output. 

Comparison of forecast results using the method in section 5.1 (initialization 
using GSM) with space and time interpolation of GSM data clearly shows that 
the BFM produced substantially improved forecast fields over those using a 
simplistic interpolation of GSM data.    Initialization using the methods in 
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sections 5.2 (initialization using GSM and mean surface wind direction and 
speed) and 5.3 (nudging of individual surface wind data at initialization) 
produced further improvement over the method in section 5.1, confirming that 
incorporation of observed data into initial fields is important. 

In this study, all the cases were simulated in Feb and Mar 94, and forecast 
fields of moisture were not compared with observation because observed data 
were not considered reliable. In future studies supported by archived data, 
cases will be simulated during the summer. 

Two statistical parameters, mean residual and standard deviation of mean 
residual for horizontal wind vector components and temperature, were 
calculated at every hour of forecast calculation by using 21 SAMS and 
25 different cases. 
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Acronyms and Abbreviations 

APRF Atmospheric Profiler Research Facility 

ARL Army Research Laboratory 

BFM Battlescale Forecast Model 

GSM Global Spectral Model 

HOTMAC Higher Order Turbulence Model for Atmospheric Circulation 

LST local standard time 

SAMS Surface Automated Meteorological System 

3-D three-dimensional 

WSMR White Sands Missile Range 
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